Skip to content

API Models

This page documents the TemplateAPI class, which serves as a versatile superclass for API-based language model implementations.

lm_eval.models.api_models.TemplateAPI

Bases: TemplateLM

Source code in lm_eval/models/api_models.py
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
class TemplateAPI(TemplateLM):
    def __init__(
        self,
        model: str = None,
        pretrained: str = None,  # `model` takes precedence over `pretrained` when passed.
        base_url: str = None,
        tokenizer: Optional[str] = None,
        # Loglikelihood tasks require a tokenizer to calculate context lengths,
        # however the requests can be sent as a string if the API doesn't support token inputs.
        # use tokenized_requests=False
        tokenizer_backend: Optional[
            Literal["tiktoken", "huggingface", "None", "none"]
        ] = "huggingface",
        truncate: bool = False,
        # number of concurrent requests. More useful if not batching
        num_concurrent: int = 1,
        max_retries: int = 3,
        max_gen_toks: int = 256,
        batch_size: Union[str, int] = 1,
        seed: int = 1234,
        max_length: Optional[int] = 2048,
        add_bos_token: bool = False,
        custom_prefix_token_id: int = None,
        # send the requests as tokens or strings
        tokenized_requests: bool = True,
        trust_remote_code: bool = False,
        revision: Optional[str] = "main",
        use_fast_tokenizer: bool = True,
        verify_certificate: bool = True,
        eos_string: str = None,
        # timeout in seconds
        timeout: int = 300,
        **kwargs,
    ) -> None:
        super().__init__()
        missing_packages = [
            pkg
            for pkg in ["aiohttp", "tqdm", "tenacity", "requests"]
            if find_spec(pkg) is None
        ]
        if missing_packages:
            raise ModuleNotFoundError(
                f"Attempted to use an API model, but the required packages {missing_packages} are not installed. "
                'Please install these via `pip install lm-eval[api]` or `pip install -e ."[api]"`'
            )
        self.model = model or pretrained
        self.base_url = base_url
        self.tokenizer = tokenizer
        if not isinstance(batch_size, int) and "auto" in batch_size:
            eval_logger.warning(
                "Automatic batch size is not supported for API models. Defaulting to batch size 1."
            )
        elif int(batch_size) > 1:
            eval_logger.warning(
                "Batch size > 1 detected. Ensure your API supports batched requests with varying total sequence lengths."
            )
        self._batch_size = int(batch_size) if batch_size != "auto" else 1
        self._truncate = truncate
        self._max_gen_toks = int(max_gen_toks)
        self._seed = int(seed)
        # max_length - 1 as we always have 1 token for generation
        eval_logger.info(f"Using max length {max_length} - 1")
        self.max_length = max_length - 1
        if int(num_concurrent) <= 1:
            eval_logger.info(
                "Concurrent requests are disabled. To enable concurrent requests, set `num_concurrent` > 1."
            )
        self._concurrent = int(num_concurrent)
        self.tokenizer_backend = (
            None if tokenizer_backend in ("None", "none") else tokenizer_backend
        )
        self.add_bos_token = add_bos_token
        self.custom_prefix_token_id = custom_prefix_token_id
        self.tokenized_requests = tokenized_requests
        self.max_retries = int(max_retries)
        self.verify_certificate = verify_certificate
        self._eos_string = eos_string
        self.timeout = int(timeout)

        eval_logger.info(f"Using tokenizer {self.tokenizer_backend}")
        if self.tokenizer_backend is None:
            self.tokenizer = None
            self.tokenized_requests = False
        else:
            if self.tokenizer is None:
                if self.tokenizer_backend == "huggingface":
                    import transformers

                    self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                        self.tokenizer if self.tokenizer else self.model,
                        trust_remote_code=trust_remote_code,
                        revision=revision,
                        use_fast=use_fast_tokenizer,
                    )
                    # Not used as the API will handle padding but to mirror the behavior of the HFLM
                    self.tokenizer = configure_pad_token(self.tokenizer)
                elif self.tokenizer_backend == "tiktoken":
                    try:
                        import tiktoken

                        self.tokenizer = tiktoken.encoding_for_model(self.model)
                    except ModuleNotFoundError as e:
                        raise ModuleNotFoundError(
                            "Attempted to use 'openai' LM type, but the package `tiktoken` is not installed. "
                            "Please install it via `pip install lm-eval[api]` or `pip install -e .[api]`."
                        ) from e
                    if "openai" not in self.base_url:
                        eval_logger.warning(
                            f"Passed `base_url={self.base_url}` but using (OpenAI) Tiktoken tokenizer backend. "
                            "Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
                        )
            else:
                import transformers

                assert isinstance(tokenizer, str), "tokenizer must be a string"
                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    tokenizer,
                    trust_remote_code=trust_remote_code,
                    revision=revision,
                    use_fast=use_fast_tokenizer,
                )

    @abc.abstractmethod
    def _create_payload(
        self,
        messages: Union[List[List[int]], List[dict], List[str], str],
        *,
        generate: bool = True,
        gen_kwargs: Optional[dict] = None,
        seed: int = 1234,
        eos: str = None,
        **kwargs,
    ) -> dict:
        """This method is responsible for creating the json payload that will be sent to the API."""
        raise NotImplementedError

    def create_message(
        self,
        messages: Union[List[List[int]], List[str], List[JsonChatStr]],
        generate=False,
    ) -> Union[List[List[int]], List[dict], List[str], str]:
        """Helper method to transform the prompt into the expected API input format. messages consist of batched requests"""
        if isinstance(messages[0], JsonChatStr):
            # for chat completions we need to decode the json string to list[dict,...]
            assert self._batch_size == 1, (
                "non-tokenized chat requests are only supported with batch_size=1"
            )
            # list[dict["role":..., "content":...],...]
            return json.loads(messages[0].prompt)

        if not self.tokenized_requests:
            # if messages are tokenized:
            if isinstance(messages[0][0], int):
                # assuming decoding is lossless. However, this is only for loglikelihood requests
                # as we need to compute the context length. For generations, we don't need to tokenize.
                messages = self.decode_batch(messages)
            if self._batch_size <= 1:
                # if batch is 1 return str
                return messages[0]
            else:
                # list[str,...]
                return messages

        # list[list[int], ...]
        return messages

    @staticmethod
    @abc.abstractmethod
    def parse_logprobs(
        outputs: Union[Any, List[Any]],
        tokens: List[List[int]] = None,
        ctxlen: List[int] = None,
        **kwargs,
    ) -> List[Tuple[float, bool]]:
        """Method used to parse the logprobs from the (batched) API response. This method should return a list of tuples"""
        raise NotImplementedError

    @staticmethod
    @abc.abstractmethod
    def parse_generations(outputs: Union[Any, List[Any]], **kwargs) -> List[str]:
        """Method used to parse the generations from the (batched) API response. This method should return a list of str"""
        raise NotImplementedError

    @cached_property
    def api_key(self) -> str:
        """Override this property to return the API key for the API request."""
        return ""

    @cached_property
    def header(self) -> dict:
        """Override this property to return the headers for the API request."""
        return {"Authorization": f"Bearer {self.api_key}"}

    @property
    def tokenizer_name(self) -> str:
        """Must be defined for LM subclasses which implement Chat Templating.
        Should return the name of the tokenizer or chat template used.
        Used only to properly fingerprint caches when requests are being cached with `--cache_requests`, otherwise not used.
        """
        return ""

    def apply_chat_template(
        self, chat_history: List[Dict[str, str]], add_generation_prompt: bool = True
    ) -> Union[str, JsonChatStr]:
        """Applies a chat template to a list of chat history between user and model."""
        if self.tokenizer_backend == "huggingface" and self.tokenized_requests:
            return self.tokenizer.apply_chat_template(
                chat_history,
                tokenize=False,
                add_generation_prompt=add_generation_prompt,
                continue_final_message=not add_generation_prompt,
            )
        else:
            # bit of a hack. We'll load back before sending to the API
            return JsonChatStr(json.dumps(chat_history, ensure_ascii=False))

    @cached_property
    def eot_token_id(self) -> Optional[int]:
        if self.tokenizer is None:
            return None
        else:
            if self.tokenizer_backend == "huggingface":
                return self.tokenizer.eos_token_id
            elif self.tokenizer_backend == "tiktoken":
                return self.tokenizer.eot_token

    @cached_property
    def eos_string(self) -> Optional[str]:
        if self._eos_string:
            return self._eos_string
        elif self.tokenizer is not None:
            if self.tokenizer_backend == "huggingface":
                return self.tokenizer.eos_token
            elif self.tokenizer_backend == "tiktoken":
                return self.tokenizer.decode([self.tokenizer.eot_token])
        else:
            eval_logger.warning(
                "Cannot determine EOS string to pass to stop sequence. Manually set by passing `eos_string` to model_args."
            )
            return None

    @cached_property
    def prefix_token_id(self) -> Optional[int]:
        if self.tokenizer is None:
            return None
        else:
            if self.custom_prefix_token_id is not None:
                return self.custom_prefix_token_id
            if self.tokenizer_backend == "huggingface":
                if self.tokenizer.bos_token_id is not None:
                    return self.tokenizer.bos_token_id
                return self.tokenizer.eos_token_id
            else:
                return self.tokenizer.eot_token

    def tok_encode(
        self,
        string: str,
        left_truncate_len: int = None,
        add_special_tokens: bool = False,
        truncation: bool = False,
        **kwargs,
    ) -> Union[List[List[int]], List[int], List[str]]:
        if self.tokenizer_backend is None:
            return [string]
        elif self.tokenizer_backend == "huggingface":
            # by default for CausalLM - false or self.add_bos_token is set
            if not add_special_tokens:
                add_special_tokens = False or self.add_bos_token
            encoding: Union[List[List[int]], List[int]] = self.tokenizer(
                string,
                add_special_tokens=add_special_tokens,
                truncation=truncation,
                return_attention_mask=False,
            ).input_ids

            # left-truncate the encoded context to be at most `left_truncate_len` tokens long
            if left_truncate_len:
                if not isinstance(string, str):
                    encoding = [enc[-left_truncate_len:] for enc in encoding]
                else:
                    encoding = encoding[-left_truncate_len:]

            return encoding

        else:
            try:
                encoding = self.tokenizer.encode(string)
            except Exception:
                encoding = self.tokenizer.encode_batch(string)
            return encoding

    def decode_batch(self, tokens: List[List[int]]) -> List[str]:
        if self.tokenizer_backend == "huggingface":
            return self.tokenizer.batch_decode(tokens)
        elif self.tokenizer_backend == "tiktoken":
            return self.tokenizer.decode_batch(tokens)

    def model_call(
        self,
        messages: Union[List[List[int]], List[str], List[JsonChatStr]],
        *,
        generate: bool = True,
        gen_kwargs: Optional[Dict] = None,
        **kwargs,
    ) -> Optional[dict]:
        # !!! Copy: shared dict for each request, need new object !!!
        gen_kwargs = copy.deepcopy(gen_kwargs)
        try:
            response = requests.post(
                self.base_url,
                json=self._create_payload(
                    self.create_message(messages),
                    generate=generate,
                    gen_kwargs=gen_kwargs,
                    seed=self._seed,
                    eos=self.eos_string,
                    **kwargs,
                ),
                headers=self.header,
                verify=self.verify_certificate,
            )
            if not response.ok:
                eval_logger.warning(
                    f"API request failed with error message: {response.text}. Retrying..."
                )
            response.raise_for_status()
            return response.json()
        except RetryError:
            eval_logger.error(
                "API request failed after multiple retries. Please check the API status."
            )
            return None

    async def amodel_call(
        self,
        session: ClientSession,
        messages: Union[List[List[int]], List[str], List[JsonChatStr]],
        *,
        generate: bool = True,
        cache_keys: list = None,
        ctxlens: Optional[List[int]] = None,
        gen_kwargs: Optional[Dict] = None,
        **kwargs,
    ) -> Union[List[str], List[Tuple[float, bool]], None]:
        # !!! Copy: shared dict for each request, need new object !!!
        gen_kwargs = copy.deepcopy(gen_kwargs)
        payload = self._create_payload(
            self.create_message(messages),
            generate=generate,
            gen_kwargs=gen_kwargs,
            seed=self._seed,
            **kwargs,
        )
        cache_method = "generate_until" if generate else "loglikelihood"
        try:
            async with session.post(
                self.base_url,
                json=payload,
                headers=self.header,
            ) as response:
                if not response.ok:
                    error_text = await response.text()
                    eval_logger.warning(
                        f"API request failed with error message: {error_text}. Retrying..."
                    )
                # raising exception will retry the request
                response.raise_for_status()
                outputs = await response.json()
            answers = (
                self.parse_generations(
                    outputs=outputs,
                )
                if generate
                else self.parse_logprobs(
                    outputs=outputs,
                    tokens=messages,
                    ctxlens=ctxlens,
                )
            )
            if cache_keys:
                for res, cache in zip(answers, cache_keys):
                    self.cache_hook.add_partial(cache_method, cache, res)
            return answers
        # If the retries also fail
        except RetryError:
            eval_logger.error(
                "API request failed after multiple retries. Please check the API status."
            )
            return None

    def batch_loglikelihood_requests(
        self, chunks: Iterable[List[LogLikelihoodInputs]]
    ) -> Tuple[List[List[int]], List[int], List[Tuple[str, str]]]:
        inputs = []
        ctxlens = []
        cache_keys = []
        for chunk in chunks:
            for cache_key, context_enc, continuation_enc in chunk:
                # max_length - 1 as we always have 1 token for generation
                inp = (context_enc + continuation_enc)[-self.max_length :]
                if len(inp) < len(context_enc + continuation_enc):
                    eval_logger.warning(
                        f"Context length ({len(context_enc)}) + continuation length ({len(continuation_enc)}) > max_length ({self.max_length}). Left truncating context."
                    )
                ctxlen = len(context_enc) - max(
                    0, len(context_enc) + len(continuation_enc) - self.max_length
                )

                inputs.append(inp)
                ctxlens.append(ctxlen)
                cache_keys.append(cache_key)
        return inputs, ctxlens, cache_keys

    async def get_batched_requests(
        self,
        requests: list,
        cache_keys: list,
        *,
        generate: bool = True,
        ctxlens: List[int] = None,
        **kwargs,
    ) -> Union[List[List[str]], List[List[Tuple[float, bool]]]]:
        ctxlens = ctxlens if ctxlens else [None] * len(requests)
        conn = TCPConnector(limit=self._concurrent, ssl=self.verify_certificate)
        async with ClientSession(
            connector=conn, timeout=ClientTimeout(total=self.timeout)
        ) as session:
            retry_: Callable[..., Awaitable[Any]] = retry(
                stop=stop_after_attempt(self.max_retries),
                wait=wait_exponential(multiplier=0.5, min=1, max=10),
                reraise=True,
            )(self.amodel_call)
            # Create tasks for each batch of request
            tasks = [
                asyncio.create_task(
                    retry_(
                        session=session,
                        messages=message,
                        cache_keys=cache_key,
                        generate=generate,
                        ctxlens=ctxlen,
                        **kwargs,
                    )
                )
                for message, cache_key, ctxlen in zip(
                    chunks(requests, n=self._batch_size),
                    chunks(cache_keys, n=self._batch_size),
                    chunks(ctxlens, n=self._batch_size),
                )
            ]

            return await tqdm_asyncio.gather(*tasks, desc="Requesting API")

    def _loglikelihood_tokens(self, requests, **kwargs) -> List[Tuple[float, bool]]:
        assert self.tokenizer is not None, (
            "Tokenizer is required for loglikelihood tasks to compute context lengths."
        )
        res = []

        def _collate(req: LogLikelihoodInputs):
            """Defines the key for the sorted method"""
            # the negative sign on len(toks) sorts descending - this has a few advantages:
            # - time estimates will always be over not underestimates, which is more useful for planning
            # - to know the size of a batch when going through the list, you know the first one is always the batch
            #   padded context length. this is useful to simplify the batching logic and more importantly to make
            #   automatic adaptive batches much much easier to implement
            # - any OOMs will happen right away rather than near the end

            toks = req[1] + req[2]
            return -len(toks), tuple(toks)

        re_ord = Collator(
            requests,
            sort_fn=_collate,
            group_by=None,
        )
        # if concurrent then we'll batch in the async context
        chunked = re_ord.get_batched(n=self._batch_size if self._concurrent <= 1 else 0)
        if self._concurrent <= 1:
            pbar = tqdm(desc="Requesting API", total=len(requests))
            for chunk in chunked:
                inputs, ctxlens, cache_keys = self.batch_loglikelihood_requests([chunk])

                outputs = retry(
                    stop=stop_after_attempt(self.max_retries),
                    wait=wait_exponential(multiplier=0.5, min=1, max=10),
                    reraise=True,
                )(self.model_call)(messages=inputs, generate=False)
                if isinstance(outputs, dict):
                    outputs = [outputs]
                for answer_, cache_key in zip(
                    self.parse_logprobs(
                        outputs=outputs, tokens=inputs, ctxlens=ctxlens
                    ),
                    cache_keys,
                ):
                    if answer_ is not None:
                        res.append(answer_)
                        # cache requests that aren't from a loglikelihood_rolling request
                        if cache_key is not None:
                            self.cache_hook.add_partial(
                                "loglikelihood", cache_key, answer_
                            )
                        pbar.update(1)
        else:
            inputs, ctxlens, cache_keys = self.batch_loglikelihood_requests(chunked)
            res = itertools.chain.from_iterable(
                asyncio.run(
                    self.get_batched_requests(
                        inputs, cache_keys, generate=False, ctxlens=ctxlens
                    )
                )
            )

        return re_ord.get_original(res)

    def generate_until(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[str]:
        res = []

        def _collate_gen(_requests):
            # sort by the length of the non-tokenized contexts
            return -len(_requests[0])

        # Let the API deal with tokenization
        requests, all_gen_kwargs = zip(*(req.args for req in requests))
        if self.tokenized_requests:
            encodings_list = self.tok_encode(
                requests, add_special_tokens=self.add_bos_token
            )
        else:
            encodings_list = [None] * len(requests)
        requests = [
            (a, b, c) for a, b, c in zip(requests, all_gen_kwargs, encodings_list)
        ]

        re_ord = Collator(
            requests,
            sort_fn=_collate_gen,
            group_by="gen_kwargs",
        )
        chunked = re_ord.get_batched(
            n=self._batch_size if self._concurrent <= 1 else 0, batch_fn=None
        )
        if self._concurrent <= 1:
            pbar = tqdm(desc="Requesting API", total=len(requests))
            for chunk in chunked:
                contexts, all_gen_kwargs, encodings_list = zip(*chunk)
                if self.tokenized_requests:
                    max_gen_toks = all_gen_kwargs[0].get(
                        "max_gen_toks", self._max_gen_toks
                    )
                    max_context_len = self.max_length - max_gen_toks

                    encodings_list = [x[-max_context_len:] for x in encodings_list]

                    if any(
                        len(x) + max_gen_toks > self.max_length for x in encodings_list
                    ):
                        eval_logger.warning(
                            f"Some contexts exceeded (max length: ({self.max_length}) - max_gen_toks: ({max_gen_toks}). They were left truncated."
                        )
                else:
                    eval_logger.info(
                        "Tokenized requests are disabled. Context + generation length is not checked."
                    )
                req = encodings_list if self.tokenized_requests else contexts
                outputs = retry(
                    stop=stop_after_attempt(self.max_retries),
                    wait=wait_exponential(multiplier=0.5, min=1, max=10),
                    reraise=True,
                )(self.model_call)(
                    messages=req,
                    generate=True,
                    gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
                )
                for generated_text, context in zip(
                    self.parse_generations(
                        outputs=outputs,
                        contexts=contexts,
                    ),
                    contexts,
                ):
                    if generated_text is not None:
                        res.append(generated_text)

                        # partial caching
                        if context is not None:
                            self.cache_hook.add_partial(
                                "generate_until",
                                (context, all_gen_kwargs[0]),
                                generated_text,
                            )
                            pbar.update(1)
        else:
            for chunk in chunked:
                contexts, all_gen_kwargs, encodings_list = zip(*chunk)
                if self.tokenized_requests:
                    max_gen_toks = all_gen_kwargs[0].get(
                        "max_gen_toks", self._max_gen_toks
                    )
                    max_context_len = self.max_length - max_gen_toks

                    encodings_list = [x[-max_context_len:] for x in encodings_list]

                    if any(
                        len(x) + max_gen_toks > self.max_length for x in encodings_list
                    ):
                        eval_logger.warning(
                            f"Some contexts exceeded (max length: ({self.max_length}) - max_gen_toks ({max_gen_toks}). They were left truncated."
                        )
                else:
                    eval_logger.info(
                        "Tokenized requests are disabled. Context + generation length is not checked."
                    )
                req = encodings_list if self.tokenized_requests else contexts
                results = itertools.chain.from_iterable(
                    asyncio.run(
                        self.get_batched_requests(
                            req,
                            cache_keys=[(ctx, all_gen_kwargs[0]) for ctx in contexts],
                            generate=True,
                            gen_kwargs=copy.deepcopy(all_gen_kwargs[0]),
                        )
                    )
                )
                res.extend(results)

        return re_ord.get_original(res)

    def loglikelihood_rolling(
        self, requests: List[Instance], disable_tqdm: bool = False
    ) -> List[float]:
        loglikelihoods = []

        for (string,) in tqdm([req.args for req in requests], disable=disable_tqdm):
            rolling_token_windows = list(
                map(
                    utils.make_disjoint_window,
                    utils.get_rolling_token_windows(
                        token_list=self.tok_encode(string),
                        prefix_token=self.prefix_token_id,
                        # max_seq_len - (1 for context)
                        max_seq_len=self.max_length - 1,
                        context_len=1,
                    ),
                )
            )

            # TODO: Right now, we pass single EOT token to the Encoder and the full context to the decoder, in seq2seq case
            rolling_token_windows = [(None,) + x for x in rolling_token_windows]

            string_nll = self._loglikelihood_tokens(
                rolling_token_windows,
                disable_tqdm=True,
            )

            # discard is_greedy
            string_nll = [x[0] for x in string_nll]

            string_nll = sum(string_nll)
            loglikelihoods.append(string_nll)

            # cache this loglikelihood_rolling request
            self.cache_hook.add_partial("loglikelihood_rolling", (string,), string_nll)
        return loglikelihoods

__init__(model=None, pretrained=None, base_url=None, tokenizer=None, tokenizer_backend='huggingface', truncate=False, num_concurrent=1, max_retries=3, max_gen_toks=256, batch_size=1, seed=1234, max_length=2048, add_bos_token=False, custom_prefix_token_id=None, tokenized_requests=True, trust_remote_code=False, revision='main', use_fast_tokenizer=True, verify_certificate=True, eos_string=None, timeout=300, **kwargs)

Source code in lm_eval/models/api_models.py
def __init__(
    self,
    model: str = None,
    pretrained: str = None,  # `model` takes precedence over `pretrained` when passed.
    base_url: str = None,
    tokenizer: Optional[str] = None,
    # Loglikelihood tasks require a tokenizer to calculate context lengths,
    # however the requests can be sent as a string if the API doesn't support token inputs.
    # use tokenized_requests=False
    tokenizer_backend: Optional[
        Literal["tiktoken", "huggingface", "None", "none"]
    ] = "huggingface",
    truncate: bool = False,
    # number of concurrent requests. More useful if not batching
    num_concurrent: int = 1,
    max_retries: int = 3,
    max_gen_toks: int = 256,
    batch_size: Union[str, int] = 1,
    seed: int = 1234,
    max_length: Optional[int] = 2048,
    add_bos_token: bool = False,
    custom_prefix_token_id: int = None,
    # send the requests as tokens or strings
    tokenized_requests: bool = True,
    trust_remote_code: bool = False,
    revision: Optional[str] = "main",
    use_fast_tokenizer: bool = True,
    verify_certificate: bool = True,
    eos_string: str = None,
    # timeout in seconds
    timeout: int = 300,
    **kwargs,
) -> None:
    super().__init__()
    missing_packages = [
        pkg
        for pkg in ["aiohttp", "tqdm", "tenacity", "requests"]
        if find_spec(pkg) is None
    ]
    if missing_packages:
        raise ModuleNotFoundError(
            f"Attempted to use an API model, but the required packages {missing_packages} are not installed. "
            'Please install these via `pip install lm-eval[api]` or `pip install -e ."[api]"`'
        )
    self.model = model or pretrained
    self.base_url = base_url
    self.tokenizer = tokenizer
    if not isinstance(batch_size, int) and "auto" in batch_size:
        eval_logger.warning(
            "Automatic batch size is not supported for API models. Defaulting to batch size 1."
        )
    elif int(batch_size) > 1:
        eval_logger.warning(
            "Batch size > 1 detected. Ensure your API supports batched requests with varying total sequence lengths."
        )
    self._batch_size = int(batch_size) if batch_size != "auto" else 1
    self._truncate = truncate
    self._max_gen_toks = int(max_gen_toks)
    self._seed = int(seed)
    # max_length - 1 as we always have 1 token for generation
    eval_logger.info(f"Using max length {max_length} - 1")
    self.max_length = max_length - 1
    if int(num_concurrent) <= 1:
        eval_logger.info(
            "Concurrent requests are disabled. To enable concurrent requests, set `num_concurrent` > 1."
        )
    self._concurrent = int(num_concurrent)
    self.tokenizer_backend = (
        None if tokenizer_backend in ("None", "none") else tokenizer_backend
    )
    self.add_bos_token = add_bos_token
    self.custom_prefix_token_id = custom_prefix_token_id
    self.tokenized_requests = tokenized_requests
    self.max_retries = int(max_retries)
    self.verify_certificate = verify_certificate
    self._eos_string = eos_string
    self.timeout = int(timeout)

    eval_logger.info(f"Using tokenizer {self.tokenizer_backend}")
    if self.tokenizer_backend is None:
        self.tokenizer = None
        self.tokenized_requests = False
    else:
        if self.tokenizer is None:
            if self.tokenizer_backend == "huggingface":
                import transformers

                self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                    self.tokenizer if self.tokenizer else self.model,
                    trust_remote_code=trust_remote_code,
                    revision=revision,
                    use_fast=use_fast_tokenizer,
                )
                # Not used as the API will handle padding but to mirror the behavior of the HFLM
                self.tokenizer = configure_pad_token(self.tokenizer)
            elif self.tokenizer_backend == "tiktoken":
                try:
                    import tiktoken

                    self.tokenizer = tiktoken.encoding_for_model(self.model)
                except ModuleNotFoundError as e:
                    raise ModuleNotFoundError(
                        "Attempted to use 'openai' LM type, but the package `tiktoken` is not installed. "
                        "Please install it via `pip install lm-eval[api]` or `pip install -e .[api]`."
                    ) from e
                if "openai" not in self.base_url:
                    eval_logger.warning(
                        f"Passed `base_url={self.base_url}` but using (OpenAI) Tiktoken tokenizer backend. "
                        "Pass `tokenizer_backend=huggingface` and provide the HF tokenizer name if your model does not use Tiktoken."
                    )
        else:
            import transformers

            assert isinstance(tokenizer, str), "tokenizer must be a string"
            self.tokenizer = transformers.AutoTokenizer.from_pretrained(
                tokenizer,
                trust_remote_code=trust_remote_code,
                revision=revision,
                use_fast=use_fast_tokenizer,
            )

_create_payload(messages, *, generate=True, gen_kwargs=None, seed=1234, eos=None, **kwargs) abstractmethod

This method is responsible for creating the json payload that will be sent to the API.

Source code in lm_eval/models/api_models.py
@abc.abstractmethod
def _create_payload(
    self,
    messages: Union[List[List[int]], List[dict], List[str], str],
    *,
    generate: bool = True,
    gen_kwargs: Optional[dict] = None,
    seed: int = 1234,
    eos: str = None,
    **kwargs,
) -> dict:
    """This method is responsible for creating the json payload that will be sent to the API."""
    raise NotImplementedError

parse_logprobs(outputs, tokens=None, ctxlen=None, **kwargs) abstractmethod staticmethod

Method used to parse the logprobs from the (batched) API response. This method should return a list of tuples

Source code in lm_eval/models/api_models.py
@staticmethod
@abc.abstractmethod
def parse_logprobs(
    outputs: Union[Any, List[Any]],
    tokens: List[List[int]] = None,
    ctxlen: List[int] = None,
    **kwargs,
) -> List[Tuple[float, bool]]:
    """Method used to parse the logprobs from the (batched) API response. This method should return a list of tuples"""
    raise NotImplementedError

parse_generations(outputs, **kwargs) abstractmethod staticmethod

Method used to parse the generations from the (batched) API response. This method should return a list of str

Source code in lm_eval/models/api_models.py
@staticmethod
@abc.abstractmethod
def parse_generations(outputs: Union[Any, List[Any]], **kwargs) -> List[str]:
    """Method used to parse the generations from the (batched) API response. This method should return a list of str"""
    raise NotImplementedError